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LETTER TO THE EDITOR 

Anisotropy of the London penetration depth in layered 
superconductors 
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+ P N Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR 
$ Centre de Recherches sur les Tres Basses Temperatures. CNRS, 38042 Grenoble 
CCdex. France 

Received 8 June 1990 

Abstract. We find the temperature dependence of the anisotropy of the London penetration 
depth A in a layered superconductor. The system considered is an array of sheets coupled by 
the Josephson interaction. We consider separately the cases when the sheets are identical, 
when they have varyingorder parameters and finally when every other sheet becomes normal 
individually. We show that the anisotropy of A is temperature independent only if all the 
layers are identical. 

The new cuprate superconductors are layered systems that show a high degree of 
anisotropy in their electronic structure. In the Bi- and Tl-Cu compounds, the ratio of 
effective masses parallel to and perpendicular to the layers can be as high as several 
thousands [1-4]. An important tool that can be used to measure this anisotropy is the 
London penetration depth A .  The value of A is theoretically not difficult to calculate and 
a variety of methods exist for measuring it (measurement of diamagnetism of small 
particles of different sizes [5-71 or  of small single crystals [8,9], p S R  [10-12], lower 
critical field H,, [13] and high-resolution torque magnetometry [4, 141). 

In this work we calculate the dependence of the anisotropy A ( T )  = AS(T) /A i (T )  as 
a function of temperature T (A, and All are the London penetration depths perpendicular 
and parallel, respectively, to the layers). We establish a model of a system composed of 
an array of two-dimensional layers with the tight-binding approximation to treat the 
electron motion between the layers. In our model the pairing interaction may be different 
inside the different layers. We calculate the function A ( T )  using such a model. This in 
turn allows us to make measurements of A( T )  in real compounds and to make predic- 
tions about the electronic structure inside these compounds. 

In the model under study the anisotropy parameter A depends strongly on the 
value of the transfer integral t which characterizes the band width in the c direction 
(perpendicular to the layers). If the anisotropy is not very large, i.e. the conditions 
T, < t are fulfilled, all the individual superconducting 
parameters of the layers are effectively averaged owing to the strong proximity effect. 
Here EFis the Fermi energy inside the layers given byh2nd/mll, n is the three-dimensional 
concentration of conducting electrons, d is the interlayer distance, m , ~  is the effective 
mass of electrons along the layers, and Ell and 5, are coherence lengths along layers and 
in the perpendicular direction (along the z axis). In this case we obtain the usual 3~ 
anisotropic superconductor with the value A which is independent of T and of the 
strength of the pairing interactions inside the layers. 

or equivalently d < Ez  < 
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In the following we consider the more interesting case of the Josephson coupling of 
layers, i.e. the system with t G T, (or ljz G d )  will be under study [15]. In this limiting 
case, A does depend on Tif the system consists of layers with different intralayer pairing 
interaction. 

Josephson coupling seems to model the Bi and T1 compounds properly, as evidenced 
by their high degree of anisotropy. The superconducting coherence length @O) in CuO, 
layers is about 15-20 A [l] .  As anisotropy is about several thousands in these systems, 
this gives g,(O) = 0.2 A, which is much smaller than the typical interlayer separation d 
of the order of 10 A. The fact that in these compounds the inequality E,(O) < d or t G 
T,, the criterion for Josephson coupling between the layers [15], is satisfied indicates 
that our model may be applicable to these systems. 

We consider a simple model of an array of sheets with alternating coupling constant 
A l  and A, in the sheets (i.e. bare critical temperatures T,, and Tc2 are defined on the 
individual layers). We choose T,, > Tc2. We describe the transfer of electrons between 
layers in the framework of the tight-binding approximation. Thus we write the wav- 
efunctions of electrons in the Wannier representation along the c axis and in the Bloch 
representation inside the sheets. We introduce alternating transfer integrals t and t' 
between the neighbouring sheets. We find it useful to define the nth unit cell as consisting 
of layers 1 and 2 with coupling parameters A 1  and A,, and transfer integral t between 
the sheets inside the unit cell. 

Identical sheets (A, = A2) with t = t' G T, are described by the Lowrence-Doniach 
model, i.e. by a model in which there is Josephson coupling between identical sheets. 
In general, the case AI # A2 and t ,  t' G T,,, called the S-S' system, is described by 
Josephson coupling of different layers, with the S-N system (with A2 = 0) being the 
limiting case. If t B T,, but t' G T,, , we have the effective averaging of coupling inside 
the cell and the system is similar to an array of identical sheets S-S with one transfer 
integral t'. In this case, the sheet S consists of two layers with an effective intrasheet 
coupling constant (Al  + A2)/2. In the following we consider two cases: a Josephson S-S 
system (A1 = A2 and t = t' G Tc,) and a Josephson S-S' or S-N system (A1 # A2 and 
t ,  t' G Tcl) on the assumption that all other parameters of layers 1 and 2 are identical. 
The generalization of our results to the case of different parameters of layers 1 and 2 in 
the normal phase is straightforward. 

The Josephson S-S or S-S' model may be applied to Bi and T1 compounds. We label 
the C u 0 2  sheets with index 1 and the BiO or Ti0 layers with index 2 assuming that they 
are metallic (if they are insulating we get the system S-S). The S-S, S-S' or S-N 
models could be applied also to artificially fabricated crystals with alternating layers of 
YBa2Cu3O7 and PrBa2Cu307 [ 16,171. The latter alone is a magnetic insulator but, when 
combined with YBa2Cu307, its properties are unknown. In terms of our model, this 
system would be characterized as either S-S or S-N with the PrBa2Cu307 layer acting 
as an insulator or metal, respectively. 

We shall show that the temperature dependence of the anisotopy A(  T )  is quite 
different in the models S-S, S-S' and S-N. So measurement of the anisotropy would 
indicate which model is preferred. 

We assume the usual BCS isotropic behaviour within the layer and use the following 
Hamiltonian: 
H = H , + H ,  

~0 = 2 [&(~)--EFlap+.n.n.oap,n,f f ,o + t  2 ~~a~.n .a .oa+p.n .a . -oa-p ' .n .a . -oap ' .n .n .o  
p n n o  pp'nao 

H ,  = c f p p '  (taLn. 1.0 a p . n . 2 . o  + t'ap+.n+ 1 , 2 . o a p , . n .  1.0) 
pp'nao 
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fppr = [d rexp[ i~ ( r )+ i@-p ' ) . r ]  ~ ( r )  = (ed/hc)A,(r) 

where (Y labels the layer inside the unit cell, U is the spin index, n labels the unit cell, 
r = ( x ,  y )  and p and p' are two-dimensional momenta inside the layer. The parallel 
component of thevector potential can be taken into account in the usual way by changing 
p t o p  - eAll/hc in E @ ) .  

The currentjl, that flows along the layers in response to All is given by the standard 
expression [18] neglecting the terms which are of second order in t/Tcl: 

wherejli(k1,) andAll(kil) are the Fourier components of the current and vector potential in 
k-space, respectively, N(0)  = ml,/2nh2 is the density of states at the 2~ Fermi surface, u F  
is the 2D Fermi velocity and A, is the order parameter on the layer (Y. This expression is 
valid in the limit kll Tcl/uF, i.e. All % Ell, which is true of high-T,superconductors. From 

To obtain the perpendicular current we calculate the addition to the free energy Fa 
arising from the vector potential A, to second order in A, through perturbation theory. 
The current j, is given by j, = c SF,/GA,. The relationship between j, and A, gives the 
penetration depth A;. 

If A I  and A2  are large (as is true over most of the temperature range T < Tc2 in the 
cases S-S and S - S ' ) ,  we may consider only the local effect of neighbouring layers on the 
free energy. So at large A2  we consider a simplified system with only two layers with 
coupling constants A I ,  A2 and between which are the transfer integrals t and t' alter- 
nately. Using the perturbation theory in t and t' we obtain 

(2) we get q T ) .  

c p n l  - cpn2 = (2ed/hc)A, 5 = E ( P ) - - F  

where cp,, is the phase of the order parameter on the layer nly. Only the anomalous 
Gor'kov functions F,,,(w, p )  were used to obtain equation (3) because they contain the 
phase difference between the order parameters, i.e. cos(cpnl - cpf12), which is then 
expanded to second order in A,. 

In the S-S system, i.e. if Tc,/Tc2 - 1 =e (t2 + t")/T~, , we obtain for the anisotropy 
parameter 

A = h2 u$/2d2[min(t2, t')] (4) 
on the assumption that d is much smaller than the length over which A ,  changes. This 
parameter is simply the ratio of effective masses m,/ml,. The value m, is given by the 
expressions 

( 5 )  
m;' = (U3/2&F 0, = (l /hd)(a&/w 
E @ ,  q)  = p*/2m,1 + (t2 + t'2 + 2tt' cos q)"* 

where E @ ,  q )  is the electron spectrum which corresponds to the Hamiltonian (1); the 
angular brackets indicate averaging of the electron velocity over the Fermi surface 
including the averaging over q in the interval 0 s q s 2n. We note that under conditions 
t, t' we get the open Fermi surface and then m i 1  = [min(t2, ~ ' ~ ) ] d ~ / ~ ~ h ~ .  
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w +  -T(q)  AI 0 Gi, 61, 

l - ; :q) ":I :- Ll [:;:]=I; 
T*(q)  w -  F:, - 

(7) 

and, in the S-N system, A 2  = 0 because A, = 0. The solution of equation (7) with 
accuracy (t/TC1)? can be written as 

G , , ( w , p ,  4 )  = w - [ 4  - Ald(q)lD-' 
G,,(w,p,  4 )  = [ L O ~ W -  - A:u+ - A1~-d(q) ]D- '  
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We note that at low temperatures and low energies E the function F:,(w,p, q )  of 
layers N has the usual form with effective gap d ( q )  = (t2 + t” + 2tt‘ cos q ) / A  I while we 
get the gap A on layers S.  The gap d ( q )  characterizes the induced superconductivity of 
layers N owing to the proximity effect. Such a gap of layers N forms gradually below the 
temperature Teff  = ( t2  + t I 2 ) / A 1  which is the effective critical temperature of layers N 
(there is no real phase transition at Tef f ;  for more details see [19]). 

Using the Green functions (9) we can calculate the parallel and perpendicular 
currents by the perturbation theory in vector potentials A,l  and A ,  for the free energy. 
Calculating the contribution to the free energy from A!, we can omit the Green functions 
which are non-diagonal in CY. The result at T G Teff is 

4 n e 2 N ( 0 ) u  $ d 2 ( q )  A;’ = 1 + -  ( d q  [w’ + d 2 ( q ) ] 3 / 2  c2d  

A ( T )  = ( h2 U $ A :/64nt4 d’) [ In( A /Teff)] - T < Te f f .  
We note that layers N give about the same contribution to  jll as the layers S below 

Tef f ,  i.e. they are completely superconducting at low temperatures. 
At Teff  < T 4 T,, we get only the contribution of layers 1 to jil (the first term in square 

brackets in (9)) because the induced superconductivity of layers N is negligible there. 
Using (9) we get with logarithmic accuracy 

A ( T )  = 0.02(h2 u$T,Zl/t4d2)[ln(A l / T ) ]  Te f f  4 T G  T,,. (11) 
Near T, the expression for A(  7‘) is 

Comparison of (lo)-( 12) shows that the magnetic anisotropy in the S-N system increases 
with increasing temperature. 

We have shown that the magnetic anisotropy parameter A is temperature inde- 
pendent in the Josephson S-S system while it increases markedly with increasing tem- 
perature in the S-S’ and S-N systems. 

There is some hope that these results can be applied to Bi and T1 compounds and to 
artificial superlattices of YBa2Cu307/PrBa2Cu307 type. Inasmuch as only one of the 
transfer integrals in the Bi and TI compounds is known to be much less than T, from the 
value A ,  we do not know whether we may model these systems as S-S (t’ G T,, t S T,) 
or S-S’ ( t ,  t‘ G T,). ForT12Sr2CaCu20s with T,  = 100 K from the torque measurements 
the value A = lo4 was obtained in the temperature interval 90-100 K [4] .  The fact that 
A is independent of T i n  this interval means that all layers coupled by the Josephson 
interaction are identical with respect to the individual critical temperature. We can 
conclude then that, if TI0 layers are conducting, they are joined to the C u 0 2  layers by 
a strong intracell transfer integral t B tc to form a sheet and the properties of the individual 
layers are averaged over such a sheet. Then the sheets from different unit cells are 
coupled by the Josephson interaction and the small transfer integral t’ G T, is really an 
intercell transfer integral. Alternatively, the T10 layers can be insulating. 

Similar measurements of the magnetic anisotropy of the system YBa,Cu307/ 
PrBa2Cu307 might indicate the preferred model here as well: Josephson S-N (with the 
Pr layers acting as a metal) or S-S (with the Pr layer acting as an insulator or as a metal 
but in the case of strong proximity effect, i.e. t 

A ( T )  = 7n’ f‘(3)h2 U $ T:, /1 86t4d f‘( 5 )  = 0. 44h’ U $ Tf, / t 4 d 2 .  (12) 

T,). 
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